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ABSTRACT

Recommendations in complex scenarios require additional knowl-
edge of the domain. Planning a composite travel spanning sev-
eral countries is a challenging, but encouraging domain for rec-
ommender systems, since users are in dire need for assistance:
Information in typical publications, such as printed travel guides
or personal blogs is often imprecise, biased or outdated.

In this paper we motivate a data-mining approach to improve
destination recommender systems with learned travel patterns.
Specifically, we propose a methodology to mine trips from location-
based social networks to improve recommendations for the duration
of stay at a destination. For this we propose a model for combining
data from different sources and identify several metrics that are
useful to ensure sufficient data quality, i.e., whether a traveler’s
check-in behavior is adequate to derive patterns from it.

We demonstrate the utility of our approach using a Foursquare
data set from which we extract 23,418 trips in 77 countries. Ana-
lyzing these trips, we determine the travel durations per country,
how many countries are typically visited in a given time span and
which countries are often visited together in a composite trip.

Also, we discuss how this method can be generalized to other
recommender systems domains.
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1 INTRODUCTION

Planning a composite trip, that is one spanning several destinations
over a prolonged time, is quite a challenge even for expert travelers.
Going on an independent trip to places which are off the beaten
tourist track requires much preparation and involves many ele-
ments of uncertainty, such as the quality of the experience, precise
costs, and the question how long one should stay in each region.
A data-driven recommender system can be helpful to design a trip
in such a complex domain, provided the underlying data is rich
and up-to-date. Thus, it is not only important to recommend the
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best items, i.e., destinations to travel to, but also how long. This can
be generalized to the problem of determining the duration of item
consumption in recommender systems. Building on [10, 25], this
paper focuses on the problem of domain-specific durations of item
consumption. Given a recommender system that solves a knapsack
problem, i.e., returning k out of n possible items: What is an appro-
priate number for k and how long should the user consume each of
the k chosen items? Concretely, the travel knapsack is constrained
by time and money; the items are destinations the recommendation
engine finds suitable for a specific traveler [10].

These questions can possibly be answered with an in-depth anal-
ysis of mobility patterns of travelers using location-based social
networks (LBSNs). Users interact with LBSNs by checking-in at
venues using mobile phones to indicate their presence at this lo-
cation at a specific time. It is possible to reconstruct paths from
check-ins and ultimately derive how the durations of stays at spe-
cific destinations are distributed.

The main contribution of this paper is a methodology to mine
trips from user check-in data. We introduce a data model that allows
combining data from various sources and metrics that inform the
analyst whether the data quality is sufficient for generating satisfy-
ing trip recommendations. Applying our approach to a Foursquare
data set, we produce preliminary results and discuss how they could
be used in a destination recommender system.

The following related work describes approaches to tourist rec-
ommender systems, how they can be improved using LBSN data
and human mobility in general. In section 3 we provide some defini-
tions, describe our data model and data sources. The main section 4
describes the trip-mining approach with heuristics and metrics. We
discuss our results and the applicability in recommender systems
in section 5. Finally, we draw our conclusions and point out future
work in section 6.

2 RELATED WORK

Research in tourist recommender systems has been around since
over 15 years [21]. The success of recommender systems highly
depends on the quality of the user model and the information about
the items to be recommended. The increasing availability of data
from LBSNs made it possible to learn about users’ preferences [28],
but also provides valuable insights to the relevancy of points of
interests [11, 29]. While there are several approaches [9, 26] to solve
variants of the Tourist Trip Design Problem [24], we aim to improve
recommenders for composite trips.

Liu et al. [14] propose the TAST (Tourist-Area-Season Topic)
Model to discover travelers’ interests and identify the seasonal
suitability of travel regions. In the follow-up paper [13] they both
extensively evaluate this model and augment it with relationship
information to recommend travel packages to groups. A similar ap-
proach introduced by Tan et al. [22] focuses on the feature selection
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to identify latent user interests. Using a framework of feature-value
pairs for representing users and travel packages to calculate distance
metrics they can employ collaborative filtering methods without
any user ratings.

Herzog and Worndl [10] develop a tourist recommender for com-
posing personalized continental travels. The user is asked to specify
her interests, e.g., nature & wildlife, beaches or winter sports along
with potential travel regions and monetary and temporal limita-
tions. Respecting these constraints, the recommendation consists
of a set of regions that maximizes the user’s preference score while
taking the travel season and diversity of the regions into account.
Determining the duration per region is done simultaneously, how-
ever, quite coarse grained by applying a static decrease in score of
5-10% per week. The underlying problem for picking the regions is
a variant of the orienteering problem [23] using the Oregon Trail
Knapsack Problem [5] as a scoring function. The destination in-
formation comes from several on- and offline information sources,
which must be incorporated and updated manually.

Messaoud et al. [15] extend [10] by focusing on the diversity
of activities [6] within a composite trip. Unlike Savir et al. [17],
who use a simple mechanism to uphold a certain level for diver-
sity of attractions, they use hierarchical clustering to improve the
heterogeneity of activities. The underlying data set is the same as

n [10], but extended with seasonal activities that have been rated
in correspondence to specific regions and traveler types.

We propose to scale these approaches up and enhance the cal-
culation of durations of stay using a data-driven approach. With
nowadays’ ubiquity of GPS modules in mobile phones a vast amount
of spatial-temporal data is being collected. However, human mo-
bility traces are privacy-sensitive information and most location
trajectories are stashed by a handful corporations. Such data be-
comes publicly available if the users choose to publish them, as
often done in LBSNs.

Song et al. [19] develop and evaluate mathematical models for hu-
man mobility and its predictability [20]. Further analysis of human
mobility in LBSNs reveals that not only geographic and economic
constraints affect mobility patterns, but also the individual social
status [7]. However, an analysis of another LBSN, Gowalla, shows
that the number of check-ins and the number of places a user has
visited seem to follow log-normal distributions, while connecting
to friends is better described by a Double-Pareto law [18].

LBSN data has also been used to capture cross-border move-
ment [4]. The authors demonstrate how movement dynamics of
people in a country can be analyzed, however, this study is not
about tourists and is limited to one country, Kenya.

Noulas et al. [16] analyze activity patterns of Foursquare users,
like the spatial and temporal distances between two check-ins. They
discover place transitions that could well be used to predict or rec-
ommend future locations of users. We consider the mindset behind
their approach quite similar to ours, however, their motivation was
to uncover recurring patterns of human mobility, thus the resulting
metrics go into a different direction.

Data from LBSNs have already been analyzed to improve recom-
mender systems [2]. This is not surprising, since the user’s locations
and social graph tells much about individual preferences. For ex-
ample, spatial co-occurrences can also be used to identify similar
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users and generate implicit ratings for collaborative filtering algo-
rithms [30]. In a more elaborate approach [1] travelers in a foreign
city are matched to local experts based on their respective home
behavior to recommend Foursquare venues.

Most similar to this work is [12]. The authors use past LBSN data
to recommend traveling paths. For this they present solutions to
derive the popularity, the proper time of day to visit, the transit time
between venues and the best order to visit the places. In contrast
to our work, the routes contain single points of interest in urban
areas and they leave determining durations of stay at one place to
future work.

To our knowledge, we are first to propose an approach to mine
planet-scale tourist mobility patterns from LBSN data. Also, our
underlying motivation, deriving domain-specific item consump-
tion durations in recommender systems has not been investigated
thoroughly.

3 DATA MODEL

We define tourist mobility patterns as the trajectories of users while
performing leisure activities outside of their regular environment.

The trajectories can be seen as a continuous stream of check-ins:
A check-in is a tuple of the unique identifier of a user (UUID), a
location, and a timestamp. Note that the location must not necessar-
ily be exact coordinates, but can also be indications of presence in
a leaf of the region tree described in the next paragraph. Similarly,
it is not required to have exact timestamps. It suffices if the dates
of entering and leaving a specific region are known.

3.1 Destination Model

When recommending a set of destinations, it is worthwhile to
discuss what a destination can be. From a user’s perspective a
destination should be a separate unit that contributes to the travel
experience. This means that destinations are geographical areas
whose touristic characteristics can be distinguished from others.

In the recommender system we adapt the idea of a hierarchical
region tree (as in [10]), where destinations constitute the nodes.
The advantage of such a model is that based on the query region
the depth of the region tree can be adapted, in order to return
destinations of a comprehensible size. For example, a query for
North America should include not only the countries Canada, USA
and Mexico, but also federal states. Conversely, when querying for
destinations in Europe, it may be sufficient to recommend countries
or even groups of countries as destinations.

There are several options for deriving a region tree. Wikitravel,
a popular collaborative tourist guide, uses following hierarchy!:

Continents
— Continental sections
— Countries
— Regions
— More regions
— Cities
— Districts

Uhttps://wikitravel.org/en/Wikitravel:Geographical_hierarchy
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Figure 1: Visualization of a trip from the data set © 2017
Google

It should be noted that this hierarchy is not strict and the authors
are encouraged to make exceptions when it serves the purpose of
presenting travel information.

Another service, GeoTree? which is based on GeoNames>, offers
a hierarchical region model. Querying the Place Hierarchy API*
from GeoNames, we obtained a four-level region tree with 250
countries in 7 continents with a total of 3874 regions (e.g., federal
states) within these countries. Although this information corpus is
sufficiently fine-grained and well-defined, it lacks the continental
sections level which is quite relevant for tourists.

In the end, the region tree must balance specificity of destina-
tions and the clustering of several regions into a larger geographic
destination, e.g., New England or the Baltic States. Also, it must be
able to map geographic coordinates (latitude, longitude pairs) to
leaves in the tree.

At this stage of our research, we use countries as nodes of the
region tree. With a richer region tree in place the concepts can be
applied to any granularity.

3.2 Data Sets

Location data is inherently privacy-sensitive and valuable as it tells
much about people’s habits. Anonymizing it for research purposes
is challenging, since correlating trajectories with single data points
introduces many de-anonymization opportunities [8]. For this rea-
son location-based social networks are usually quite restrictive
towards querying user location and enforce more or less strict API
limits. Nevertheless, Bao et al. [2] lists some data sets stemming
from location-based social networks. To the best of our knowledge,
Yang has published the largest data set about human mobility®
stemming from Foursquare [27]. It contains check-in data from 18
months (April 2012 to September 2013), 266,909 users at 3,680,126
venues in 77 countries. While these numbers are quite big, it should
be noted that it only contains check-ins from 415 cities. Thus, it
will not include travelers seeking recreation in the countryside.

Note that with our data model, it is possible to combine several
data sources to create a larger stash of mobility data. However, this
must be handled with care, as the data sets might be imbalanced
regarding the population.

2http://geotree.geoname&org

Shttp://www.geonames.org
“http://www.geonames.org/export/place-hierarchy.html
Shttps://sites.google.com/site/yangdingqi/home/foursquare- dataset
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Table 1: Characteristics of 65,745 travelers

Feature max mean std. deviation
Countries visited 31 2.88 1.80
Days active 532 392.82 132.421
Check-ins 4284  141.50 157.89
Check-ins per day 49 0.42 0.69

Check-ins abroad 86.67% 12.23% 0.15

4 MINING TRIPS FROM CHECK-IN DATA

The overall goal is to collect tourist trips from non-tourism related
mobility data. This section describes how we develop and evaluate
heuristics using several metrics.

4.1 Data Processing

Our first step is to investigate the characteristics of the aforemen-
tioned Foursquare data set with regard to tourist mobility data. We
remove 201,164 (75.37%) of the 266,909 users since they checked-in
in a single country only.

Table 1 summarizes some basic characteristics of the remaining
travelers. Days active is the time from the first to the last check-
in of a user. The mean value of about 14 (out of 18) months of
user activity is long enough to actually have the chance to observe
prolonged travels. Furthermore, the mean value of one check-in
per two days indicates that the users are quite active. In the end of
section 4.2 we discuss whether the temporal resolution is actually
high enough for analyzing travel patterns.

Since the data set does not include any user profiles, the travel-
ers’ home country must be determined from the check-in stream.
The simplest heuristic assumes that a user’s home country is the
one with most check-ins. Applying this results in a mean value of
12.23% of foreign check-ins. This seems like a reasonable value to
us, especially since the data stems from a prolonged time period.
However, there are frequent travelers, who are abroad often or who
simply don’t check in frequently at home. To reduce such false
positives, it would be possible to discard travelers who spend more
time abroad than a predefined threshold, e.g., 50%. In this data set
this would remove additional 1,762 travelers of uncertain home
country. In the end we don’t apply this additional heuristic, as we
think that the data of such frequent travelers provides more benefit
than the misclassification of the home country.

The users’ check-in stream is segmented into trips by periods
of being abroad before returning home. We require these trips to
be at least seven days long, since short travels have a different
character than the travels we design the recommender system for.
Furthermore, this filters out weekend trips and business travels
resulting in 34,892 trips from 23,218 distinct travelers. Figure 1
visualizes the itinerary of an exemplary long trip from the data set
from Japan over South-East Asia, India, Israel and Europe.

4.2 Metrics

The further data processing is driven by metrics, which we now
explain before analyzing the results.
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Figure 2: Trip durations, long tail (max = 500) omitted

Trip Duration. We define the duration of a trip as the number of
calendar days from first to last check-in. Figure 2 shows the distri-
bution of trip durations. One can see small spikes in the curve of the
distribution at two, three and four weeks, which we attribute to the
typical duration of holidays. This metric is useful to characterize
the data set and identify weaknesses in the heuristics.

Check-in Rate. The check-in rate is the number of check-ins per
day. It can be used to classify the activity of users.

check-in rate = M

days

Check-in Density. For judging the quality of tourist mobility
patterns, however, the check-in density is more important. This
metric is central to us, because we rely on a constant stream of
check-ins instead of check-ins occurring in bursts.

days with check-in
check-in density = Sy e
days
Like the check-in rate, it can be calculated for single trips, or the
the whole period under observation.

Transition Time. The transition time is the period between check-
ins in different regions. It must be low for being able to correctly
segment a check-in stream. The longer the transition time, the
higher the uncertainty about the traveler’s location at a given point
in time.

Sometimes, there are hints that ease the segmentation problem.
For example, if the user’s first check-in in a country is at an airport
or harbor, one can assume that she just arrived there, reducing the
transition time to basically zero.

To verify that the mined trips are useful for our purposes, we cal-
culate the mean transition time between two check-ins in different
countries. The long mean duration of 9.80 days made us suspicious,
given the mean of 0.42 check-ins per day (cf. Table 1). Our hypoth-
esis is that the Foursquare app is not typically used at a constant
rate, but check-ins occur in bursts. To verify this, we analyzed the
check-in densities of the travelers. Indeed, some displayed a very
small check-in density which inevitably leads to inaccurate results.

To come up with a suitable lower limit, we analyzed the conse-
quences of enforcing a minimal check-in density. Figure 3 depicts
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Figure 3: Check-in densities of travels

this trade-off. Since the curve is smooth and without an obvious
‘elbow’, we set the trade-off at 20%, which discards 32.88% of the
trips. Recalling our initial goal with this heuristic, we reduced the
mean transition time from 9.80 to 3.39 days while still keeping
23,418 trips.

5 RESULTS

Our two main findings are the durations of stay per region and the
number of destinations per trip. The former bears quite convincing
results, while for the analysis of destinations per trip more data
of long travels would be required. Also, we find which are the
countries visited most frequently together.

5.1 Duration of Stay per Region

Figure 4 shows the mean duration of stay for each country. Besides
Kuwait, the top 20 countries are either travel destinations with
warm maritime climate (especially islands) or countries with a
very large area. We attribute that to beach holidays travels that
usually take 2-3 weeks. The remoteness of islands and the size
of the countries can be seen as factors that contribute to a long
trip duration. Examining the trips to Kuwait, we find that most
travelers stem from the US, Great Britain and the Arabic Emirates
and typically don’t combine Kuwait with other countries in their
trips. To us this indicates that these are business travelers who stay
there for several weeks instead of returning home in the weekends.

Conversely, small, continental countries are the ones that are
visited for very short periods. Open borders, as in the Schengen
Area seem to contribute to smaller durations of stay, as opposed
to countries with high visa fees, like Belarus or Kazakhstan, who
charge about $60 for a tourist visa.

5.2 Destinations per Trip

Figure 5 shows the mean number of visited countries given the
travel duration. The low mean values are a consequence of the
distribution: Most travelers typically only visit a small number
of countries per trip. The curve is quite smooth in the beginning,
however, after 50-100 days the variability increases (the shaded area
depicts the standard deviation), since there are too few travels that
contribute to the mean (cf. Figure 2). Long trips, like our example
in Figure 1, with many countries are nevertheless interesting, as
they can be analyzed regarding the sequence in which the countries
are visited.



Deriving Tourist Mobility Patterns from Check-in Data

Learn-IR’18, February 2018, Los Angeles, California, USA

ean days
o | 0.0 i gﬁ)serval?{)ns
o~
o L
2 °e g
o ° ~ g
o
v A 00, 04 k
o] o @
o N4 ®oo0 ©0%po [~ § é
§ 0000000, oo g
00o L @
o Seeo oo é
00o o
o0 0o ? [ 8
(e} o o ° —
© 9 ©00000¢o
2060 r
o
™ - °°%0o o o
I Bl ] Ll I
o - ?.To?..c vT .T. . .TT ol ?To? T ffTT ee | ?P00 .f TT T.o?To YT T TT TTY L o
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr1r1rrr1rrr1rrrrrrrrrrrrrr T rr T T T T T I T T T T
G C G B 2O B> = 0NV CECQNCECOC SN 0CgECCCEGSQUECUOUUCTERTUYDTCTECTXTRCVSTNTD EX G
e B b it e Pt pev e ok R e - Bk e R e Ry
S 5 C R ,PEDNER=2225682550S 2580 2U= 00 S8 8GN X 50QNOEcs o858 eESSLE S8 cH2Ecy
“eO0EgOXEIRIFE RRF0E2E82e~888 3327 = S £8988R/LLS T SoE =¥FL 53IEZISIsflZ520
S 82 REITT 8 <39 HG £ CNE “ow £ z ¥°=2a7ggskR cem > zo 29 g £4£@qT
£ <0 ¢ F = gio = 3 8 B gt ’g 8 25
5 @ g5 = £ z
a £ = e
[ =]
Figure 4: Durations of stay per regions
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Figure 5: Countries per trip; duration < 200 days United Kingdom, France, Spain 29
Thailand, Malaysia, Singapore 22
5.3 Country Co-occurrences United Kingdom, France, Italy, Spain 21
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also shows the limitations of the data set.

5.4 Outlook: Item Consumption Duration from
Mobility Patterns

We envision to use these metrics to improve recommendations for
future travelers. Recall that our problem is to assign durations of
stay to a set of regions.

In the basic case we can directly use the average durations of
stay from Figure 4 as recommendations for how long a user should
stay in the specific regions. If the user has completed a traveler
type self-assessment or provides a check-in history, we can refine
the recommendations based on the available mobility patterns. For
example, if we know that our user is a fast-mover, i.e., one that
spends little time per region, we could calculate the durations based
on other travelers’ habits that showed a similar behavior in the

past. Conversely, someone who prefers to spend holidays at one
destination should be recommended a concise itinerary.

Generalizing this work is highly dependent on the problem do-
main. For example, one could transfer our approach to a fitness
training scheduler, where the workout schedule of professional
or semi-professional athletes is analyzed. Using data from sports
watches it would be possible to automatically derive the amount of
time they spend in their respective training type. The traveler type
would correspond to the type of sports, while the countries would
be the different training methods. Concretely, an triathlon athlete
would practice swimming, running, biking, but also go to the gym
to work out.



Learn-IR’18, February 2018, Los Angeles, California, USA

6 CONCLUSIONS AND FUTURE WORK

This paper marks a first step towards utilizing check-in data from
LBSNss to derive durations of stay of individual destinations during
a composite trip. With the proposed data model and approach it
is possible to mine travel durations from trajectories of users and
make informed decisions about the quality of data.

Since this research is at an early stage, several aspects can be
improved in future. First and foremost, the granularity of the des-
tination model must be refined to have federal states as leaves in
the region tree. This would require much more traveler data, since
with many more and smaller areas, the number of observations per
region decreases. Other data sources besides LBSN user check-ins
could be large corpora of images with location metadata such as
Flickr®, 500px’, Photobucket® or other image sharing platforms.

Incorporating information from tourist booking services for ac-
commodation or transport would be a parallel avenue to pursue
our goals. Again, this information is typically unavailable for re-
search purposes. Combining several data sources with their own
peculiarities and biases requires to analyze and potentially refine
the metrics and heuristics proposed in this work.

Finally, we plan an in-depth analysis and clustering of character-
istic traveler types to improve the personalization of recommended
travel itineraries.

Further applications of this approach could be location predic-
tion [3, 16] in general, but constructing destination n-grams can
also contribute to determine the sequence in which the destinations
are recommended.
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