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Abstract
The involvement of geographic information di�erentiates point-of-interest recommendation from tradi-
tional product recommendation. This geographic in�uence is usually manifested in the e�ect of users
tending toward visiting nearby locations, but further mobility patterns can be used to model di�erent
groups of users. In this study, we characterize the check-in behavior of local and traveling users in a
global Foursquare check-in data set. Based on the features that capture the mobility and preferences
of the users, we obtain representative groups of travelers and locals through an independent cluster
analysis. Interestingly, for locals, the mobility features analyzed in this work seem to aggravate the
cluster quality, whereas these signals are fundamental in de�ning the traveler clusters. To measure
the e�ect of such a cluster analysis when categorizing users, we compare the performance of a set of
recommendation algorithms, �rst on all users together, and then on each user group separately in terms
of ranking accuracy, novelty, and diversity. Our results on the Foursquare data set of 139,270 users in �ve
cities show that locals, despite being the most numerous groups of users, tend to obtain lower values than
the travelers in terms of ranking accuracy while these locals also seem to receive more novel and diverse
POI recommendations. For travelers, we observe the advantages of popularity-based recommendation
algorithms in terms of ranking accuracy, by recommending venues related to transportation and large
commercial establishments. However, there are huge di�erences in the respective travelers groups,
especially between predominantly domestic and international travelers. Due to the large in�uence
of mobility on the recommendations, this article underlines the importance of analyzing user groups
di�erently when making and evaluating personalized point-of-interest recommendations.
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1. Introduction

Recommender systems are prevalent in numerous areas including videos or movies (Net�ix,
Youtube), books (Goodreads), consumer products (Amazon), or social contact recommendations
(Twitter, LinkedIn) [1]. In the travel and tourism domain, point-of-interest (POI) recommenda-
tion is an interesting challenge, where the items to be recommended are venues to be visited
when the users arrive at a speci�c city or region [2, 3]. To perform POI recommendations, much
of the data available to the scienti�c community stems from location-based social networks
(LBSNs), such as Foursquare, Gowalla, or Yelp [4, 5]. LBSNs are so frequently used in research
because the data usually comprises of several countries and provides additional information
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about social interactions between the users. Despite the richness and availability of LBSN data,
POI recommendation has speci�c aspects that di�er from the conventional recommendation
of movies, books, or music that a�ect the recommenders’ performance, including, the implicit
information and repeated interactions, as users may check into at the same venue more than
once; the relevance of external in�uences, such as social, temporal, sequential, and, most impor-
tantly, the geographical in�uence, since users tend to visit nearby locations [6, 7, 5]. Finally,
the sparsity of the interaction data is typically more severe: For example, the global check-in
Foursquare data set from [8] has a density of 0.0034%, making recommendations more di�cult
than the traditional scenario, such as the well-known Movielens25M data set1 with a density of
0.2489%.
In addition to the abovementioned issues that a�ect the performance of the recommenders,

we must also consider the di�erent types of users that can be found in LBSNs. Traditionally,
when measuring the recommendation quality in o�ine settings, all users are treated in the same
way; hence, there is hardly a recommender systems study that does not report accuracy metrics
for each algorithm such as Precision or nDCG averaged over all users, although the focus
of evaluation has shifted from only accuracy to further measures, such as novelty, diversity,
or serendipity [9, 10]. Recently, researchers have pointed to the importance of analyzing the
characteristics of di�erent types of users, e.g., based on their age, gender, and cultural diversity,
to detect a possible bias toward certain users in the models [11, 12, 13].

Considering these issues, we analyze to what extent the performance of POI recommendation
algorithms di�ers among di�erent user clusters obtained by analyzing various features. For
this, we use a set of well-known cities namely Istanbul, Mexico City, Tokyo, New York, and
London, and separate the users into locals and travelers based on them being in their home city
or on a visit. For discovering groups within these two categories, we characterize the two user
groups based on the behavior they exhibit using various features, thereby focusing on mobility
patterns and the types of the visited venues. In the cluster analysis, we obtain di�erent user
clusters which we use to analyze the performance of di�erent recommendation algorithms in
each of the obtained subclusters in terms of ranking accuracy, novelty, and diversity.

The structure of this paper is as follows: After positioning our approach within literature in
Section 2, we describe the process to compute the behavioral metrics and to obtain the di�erent
user groups according to the check-ins they performed in Section 3. In Section 4, we explain
the experimental procedure followed in the experiments and describe the results obtained in
Section 5. Finally, we present our conclusions and future research directions.

2. Related Work

In the tourism domain, there is a considerable variety of categorizing the behavior of many
types of travelers visiting a particular region. Such types of travelers have been identi�ed
using various methods, such as factor analyses or clustering [14, 15]. For example, tourists
have been categorized based on their cultural motives and their cultural depth experience [16],
while Yiannakis and Gibson used a three-dimensional scaling analysis between familiarity-
strangeness, stimulation-tranquility, and structure-independence to identify 13 di�erent touristic

1Movielens25M data set: https://grouplens.org/datasets/movielens/
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roles [17]. A more recent article by Neidhardt et al. developed the “Seven Factor Model” wherein
the tourist pro�les were derived from seven basic factors in which the score of each factor was
determined by a set of images selected by the user whose factor score was previously decided
by experts [18]. These approaches, thus, established frameworks for categorizing tourists,
however, the identi�ed categories are based on a di�erent data source to the domain of the
actual recommender system. When developing a new tourism recommender system, one would
need to �nd mappings for both the items and the users to be able to utilize such categorizations.
Hence, in this study we would like to determine whether it is possible to obtain di�erent user
groups by applying clustering techniques on the same data that is also used in the recommender
system. For this, we analyze the user behavior in a Foursquare data set [8], discover groups
using cluster analysis and then train and evaluate POI recommenders on the same data set to
detect if there are major di�erences in the recommendations produced to these groups in terms
of relevance, novelty and diversity. We are aware that there are other POI recommendation
works that apply clustering, like [19, 20, 21]. However, in those articles, the researchers used
these techniques to �nd user groups with common behavior to generate recommendations,
while in our work, we identify these user groups based on whether they exhibit a more traveler
or local behavior and detect if there are substantial di�erences in the recommendations received
by them.

This article extends and combines two previous studies: In the �rst one [22], we established
trip mining algorithms for LBSN data and already used the global Foursquare check-in data
set [8] to identify four di�erent trip types based on trip trajectories. In this work, however, our
focus was solely on travelers, not considering the mobility of users while being at their home
cities. The other study [23] analyzed the needs of di�erent user types in POI recommendations,
by categorizing Foursquare users into di�erent cities into tourists and locals and analyzing
the performance of the recommenders in both locals and foreigners. However, as there are
many di�erent types of users within these groups [22, 17, 18], we re�ne this initial analysis
by investigating the performance of di�erent recommendation algorithms in each of the user
groups in detail. For this, we perform two independent cluster analyses within the travelers and
locals, which is driven by the behavior of the users on the global check-in Foursquare data set.

3. User Behavior Characterization and Cluster Analysis

In this �rst step, we aim to �nd coherent groups of users that can be discriminated based on
information that is relevant to POI recommendation and can be extracted from LBSNs. When
performing cluster analysis, the features selected shape the outcome, so it is imperative to
compute features that actually help to de�ne the user characteristics. Using a global-scale check-
in data set from Foursquare2 made public by the authors [8], we aim to determine expressive
features to characterize di�erent sub-groups within two distinct classes of users: travelers and
locals. This separation of travelers and locals is necessary, because the behavior on LBSNs di�ers
signi�cantly depending on the user being home at a city or if she is on a visit. Consequently,
there are di�erent features to capture the user behavior.

2Foursquare: global-scale check-in data set: https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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3.1. Data Preprocessing

This Foursquare data set contains a total of 33M check-ins from 415 di�erent cities globally.
Starting from the complete data set, we performed the following preprocessing steps to eliminate
noise and ensure a higher data quality: We �rst removed users with consecutive check-ins of
less than 60s, as well as consecutive check-ins in the same POI and check-ins with an unrealistic
transition speed of more than 343 m/s. Next, we enforced 10-core for users and POIs, i.e.,
removed interactions so that ultimately all remaining users have at least 10 interactions and
each POI has at least 10 visits. Finally, we split the processed data set following a temporal
partition in which 80% of the most ancient interactions are sent to the training set, whereas the
other 20% is used as the test set.

Using the information in the training set, we performed two cluster analyses, independently
for locals and travelers. To perform this study correctly, it is essential to know a user’s home
because only check-ins of the home city of a user should be used to compute their behavior
as a local; likewise, a user’s travel behavior should solely be characterized using check-ins
outside of the home city. For determining a user’s home in the context of LBSN check-in data,
several methods exist [24]; however, taking the city where most check-ins are done consistently
produces highly accurate results when used along with a threshold. As such, we determined
exactly one city for each user as home city using a threshold of at least 50% of check-ins needed
to be performed in the most frequent city. This step excludes another 8,548 (6.20%) users with
an unclear home from the training data, resulting in 129,294 valid users in the training set.

3.2. Local Behavior Cluster Analysis

To discover distinct groups of user activity in their home town, we exclusively analyzed check-
ins they have performed in their home cities and computed various features including mobility
metrics, such as the radius of gyration, the mean distance from the city center, and the mean
distance between consecutive check-ins. Further features describe the activity of the users, e.g.,
the mean time between check-ins, the activity period, the number of check-ins, and the number
of unique POIs visited. Finally, we also count check-ins in relevant categories separately, such as
visiting POIs labeled with “Arts & Entertainment,” “Outdoors & Recreation,” “Food,” “Nightlife
Spot,” and “Shops & Services.”

First, we analyze correlations between features and eliminate those that have a high correla-
tion > 0.7, as they are redundant. Likewise, we eliminate features that are orthogonal to all
other ones identi�ed by very low correlations with other attributes [�0.1; 0.1]. These features
are essentially treated as noise by the clustering algorithm and, thus, decrease the quality of the
discovered groups. Concretely, this step resulted in the elimination of the following metrics:
mean check-ins per day, total number of check-ins, and the number of check-ins in “Colleges &
Universities.”

Using the k-means algorithm, we systematically analyzed the outcome of the algorithm using
the Euclidean Distance and min-max normalized features. Examining the quality of the resulting
clusters using di�erent values for k, we observed that the segmentation quality was very low,
despite having performed the relevant steps of the prior correlation analysis. Experimenting
with di�erent feature combinations, the silhouette width ranged in the area of 0.3 for 3–4



clusters and further dropped with a higher k. However, when dropping the mobility features
(radius of gyration, mean check-in distance, and mean distance to city center), we obtained
clearly better results, and �nally choose the optimal con�guration of a silhouette width of 0.57
for k = 3. We plot the silhouette width against k in Figure 1a and refer to the details of the
�nal result in Table 1.

Table 1
Cluster results of the 129,294 locals. In the absence of mobility features, the segmentation is mostly
driven by the activity level of the users. Values represent the mean/standard deviation.

L1 L2 L3

Name Low Medium High
Ratio 25.3% 28.0% 46.6%

Activity Duration 79.74/40.47 205.65/38.98 341.86/30.75
Unique POIs 14.36/ 9.89 20.63/12.68 26.03/16.66
Arts & Entertainment 1.30/2.70 2.11/3.49 3.58/5.54
Outdoors & Recreation 4.18/ 7.43 5.87/10.01 6.55/12.23
Food 6.65/ 9.03 10.45/12.40 13.67/18.48
Nightlife Spot 1.42/3.60 2.38/4.83 3.73/7.38
Shops & Service 4.43/ 6.27 6.43/ 8.01 8.74/11.61

There are three clusters, two which respectively make up about a quarter of the users and
one larger one, containing the remaining 46.6% of the locals. We interpret the fact that the
mobility features, such as the radius of gyration and the distance to the city center prevented
the algorithm from �nding an acceptable segmentation of the locals, as a clear indication that
these features are unsuitable for distinguishing di�erent resident groups in the data set at hand.
This may be due to several reasons: residents might be more active in their respective districts
making it hard to characterize their behavior with metrics in relation to the entire city. In
addition, commuting introduces noise, which is di�cult to eliminate given the volatile usage of
LBSNs during leisure and work time. Finally, the mobility metrics to characterize residents of
�ve di�erent cities might need more careful deliberation: cultural and geographic circumstances
could be too di�erent to �nd universal clusters across all cities. This means that the clustering
result of the locals is mostly in�uenced by the user activity level.

3.3. Traveler Behavior Cluster Analysis

Similar to the locals, we analyzed the behavior of the users when traveling outside of their
respective home cities. The processing was performed using the tripmining library3, which
segments the user’s check-ins into periods of being at home and in other cities [22]. Consecutive
periods abroad are regarded as trips, provided certain data quality criteria are met. Unlike the
analysis of the local behavior, these quality criteria are necessary because we need to know the
location of the user at any time. However, the nature of check-in-based data is that we only
know the user location when she used the Foursquare app, thus, we have an incomplete view

3tripmining library: https://github.com/LinusDietz/tripmining
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(a) Locals: k = 3 was chosen as �nal result, since
this was the last value above 0.5 andwith larger
values for k, the silhouette width only decreases
gradually.

(b) Travelers: We chose k = 4, since with higher
k, the silhouette width plateaus.

Figure 1: Determining the number of clusters using the silhouette width.

of the periods between the check-ins. This uncertainty is acceptable in a global travel scenario,
since users typically only travel to a few cities per day and it is possible to quantify the date
quality using various metrics. In this case, we used the default settings of the tripmining library:
A minimum check-in density of 0.5, which means that there is on average at least one check-in
in two days during the trip, a minimum duration of two calendar days between the �rst and
the last check-ins of a trip, and a maximum of three days without any check-in. These metrics
limit the uncertainty involved when working with incomplete information, which is inherent
to check-in based data. As a result, we obtained 38,903 travelers who did a total of 64,316 trips.

We aggregated all trips of a traveler as their traveler pro�le, and again used the same method
used for the locals to select the features. The number of stays in cities (non-distinct) and the
number of “Food” check-ins were eliminated due to a high correlation to the number of trips.
The �nal features lead to four clusters with a silhouette width of 0.68. We chose K = 4 as the
optimal number of clusters, as the silhouette width was just slightly lower than K = 3 (0.73),
but clearly higher for K � 5, which was around 0.5 (cf. Figure 1b).

The four traveler clusters tabulated in Table 2 show similar groups as the clustering of Dietz
et al. [22], although their work clustered trips, whereas we aggregated the trip metrics per
traveler before clustering. With around 81% of the traveling users, T3 (Domestic) is the most
numerous group comprising travelers whose trips were almost exclusively domestic close to
their home cities. T1 (Foreign Cities) are infrequent travelers with only 1.33 trips that are mainly
international, where the users were quite stationary at their destination, as can be seen in the
low radius of gyration. T4 (Globetrotters) is similar; however, this group of intercontinental
travelers, was more into POIs of the “Arts & Entertainment” category than T1. The high radius
of gyration in Globetrotters can be an artifact of airfare stopovers because such check-ins are
also included in the trips. Finally, T2 (Active Vacationers) is also a small cluster, but it has the
most active travelers with 2.77 trips visiting many unique cities both in their own country and
abroad.



Table 2
Cluster results of the 38,903 travelers. The discovered groups shed light on the preferred type of trips
the users did. Values are the mean/standard deviation.

T1 T2 T3 T4

Name Foreign Cities Active Vacationers Domestic Globetrotters
Ratio 11.1% 5.0% 80.6% 3.2%
Ratio Domestic Trips 0.09% 55.36% 99.94% 0.46%

Displacement 1324.58/1086.56 1746.56/1806.27 503.19/ 673.21 7599.87/2715.97
Radius of Gyration 263.34/ 556.04 1783.14/2029.40 108.96/ 285.24 1968.35/2818.53
Number of Trips 1.33/1.01 2.77/1.20 1.64/1.44 1.30/0.89
Unique Cities 1.64/0.96 3.45/1.54 1.58/0.94 2.30/1.44
Arts & Entertainment 0.44/0.85 0.89/1.29 0.38/0.81 0.72/1.35
Outdoors & Recreation 0.75/1.33 1.53/2.18 0.95/1.92 0.80/2.31
Nightlife Spot 0.27/0.76 0.68/1.25 0.44/1.12 0.37/1.93
Shops & Service 0.90/1.62 1.65/2.22 0.98/1.80 0.90/1.62

3.4. Summary

We characterized Foursquare users by features that can be computed exclusively from analyzing
their check-ins. The independent characterization of the users’ check-in behavior in their home
city and during travel allowed us to discover three and four distinct groups for locals and
travelers, respectively. Our main takeaway from the cluster analysis is that the mobility metrics
explored in our work seem to be unsuitable for characterizing locals in our LBSN check-in
data set, as the clustering algorithms struggle to �nd distinct groups using these features. This
also implies that if we mix travelers and locals users when evaluating POI recommendation
algorithms, we will likely observe disparate results due to the fact that we may not adapt well
to the interests of any of them, as – quite unsurprisingly – their behavior di�er considerably.
We use these groups to systematically investigate the e�ect of using such cluster information of
users on the performance of POI recommender systems.

4. Experimental Settings

Once we establish di�erent user groups applying the clustering, we now describe the setup fol-
lowed for performing POI recommendations. The global-scale check-in data set from Foursquare
comprises a total of 33M check-ins from over 415 di�erent cities around the world. Starting
from the complete data set, we performed the preprocessing steps and the temporal split, as
stated in Section 3. With the processed data set, for producing the recommendations, we decided
to select a set of large metropolises from around the world with di�erent densities: Istanbul,
Mexico City, Tokyo, New York, and London. We decided to work with these cities independently
(training and testing the recommenders separately for each city) because as the geographical
information is exploited by many POI recommendation approaches, it may be counterproductive
to mix check-ins from geographically distant regions. In Table 3, we present the statistics of the
di�erent cities, showing the number of total users users, venues, check-ins, unique check-ins,



Table 3
Statistics of the data set and cities used in the experiments. |U|, |V|, |C|, and |C|

|U|·|V|% represent the
number of users, venues, check-ins, and the density, respectively. As in LBSNs, some users may check-in
in the same venue more than once, we also report in column |C|u the number of unique check-ins and
|C|u

|U|·|V|% represents the density with the unique check-ins.

City Split |U| |V| |C| |C|u
|C|

|U|·|V|%
|C|u

|U|·|V|%

Filtered data set
Full 139,270 251,115 9,266,149 4,354,336 0.02650 0.01245
Training 137,842 248,692 7,412,919 3,596,596 0.02162 0.01049
Test 108,213 196,945 1,853,230 1,134,909 0.00870 0.00532

Istanbul
Full 29,307 20,366 1,569,015 821,683 0.26288 0.13767
Training 26,894 19,976 1,189,646 645,536 0.22144 0.12016
Test 21,780 17,226 379,369 248,157 0.10112 0.06614

Mexico City
Full 5,944 7,978 286,638 147,850 0.60445 0.31178
Training 5,690 7,948 237,188 125,675 0.52447 0.27789
Test 4,018 6,442 49,450 32,616 0.19104 0.12601

Tokyo
Full 6,631 5,543 227,391 122,814 0.61866 0.33414
Training 6,213 5,534 186,248 103,768 0.54169 0.30180
Test 4,194 4,831 41,143 28,211 0.20306 0.13924

New York
Full 8,170 3,557 109,611 68,988 0.37718 0.23739
Training 7,238 3,548 92,790 59,342 0.36133 0.23108
Test 3,319 2,867 16,821 12,728 0.17677 0.13376

London
Full 4,235 1,612 43,794 26,472 0.64150 0.38776
Training 3,520 1,607 35,516 21,697 0.62786 0.38357
Test 1,749 1,361 8,278 6,108 0.34776 0.25660

and both the training and test sets used in each independent city. Note that the �ltered dataset
was used to generate the locals and travelers clusters. Notably, this table includes all users
found in each city, even those whose home towns are unclear (and hence no traveler nor local
cluster associated). Because we performed a temporal split, there might be new users in the test
set with no user cluster associated, as the cluster analysis was performed solely on the training
set. Analyzing the values in this table, we want to highlight some relevant observations before
showing the actual experimental results. First, from Table 3, the check-in repetitions represent
a relevant percentage of the interactions (the percentage of unique check-ins reach at most
60%), making it di�cult to recommend new POIs to users. Further, only a total of 38,903 users
were observed to be traveling in the training period, providing the algorithms less training data
than the locals.

4.1. Algorithms

In this section, we brie�y list the algorithms used in our experiments, which can be categorized
into classic and POI recommendation algorithms (the parameters tested in the recommenders are
shown in Table 4). For their exact formulations, we refer the reader to the respective references.



• Classic recommendation algorithms:

– Rnd: performs recommendations of venues randomly.
– Pop: recommends to the target user the venues that have been visited by the largest

number of users.
– UB/IB: non-normalized user and item-based neighborhood approaches [25, 26].
– HKV: matrix factorization (MF) algorithm that uses Alternate Least Squares for

optimization (from [27]).
– BPRMF: Bayesian Personalized Ranking (a pairwise personalized ranking loss opti-

mization algorithm) using a MF approach (from [28]). We used the version from the
MyMedialite4 library.

• Speci�c algorithms for POI recommendation:

– IRENMF: weighted MF method from [29]. This method incorporates geographical
information in two di�erent ways: instance level in�uence (users tend to visit neigh-
boring locations) and region-level in�uence (they assume that the user preferences
are shared in the same geographical region).

– GeoBPR: geographical BPR. POI recommender optimized using BPR [30]. It analyzes
the POIs visited by the target user and assumes that she will prefer to visit new POIs
that are close to the ones she visited previously.

– FMFMGM: probabilistic MF with multi-center Gaussian model. It is an hybrid
approach proposed by [31] that combines Probabilistic MF (PMF) with a Multi-
center Gaussian Model technique (MGM).

– RankGeo-FM: a ranking-based MF model proposed in [6]. They model the geograph-
ical in�uence by exploiting the geographical neighbors POIs with respect to the
target POI using an additional latent matrix for the users.

– PGN: popularity, geographical, and user-based neighborhood. Hybrid approach
that combines the popularity algorithm (Pop), user-based neighborhood (UB), and a
geographical recommender that recommends to the target user the venues closer to
the average geographical position of all the venues visited by the user. The �nal
score is an aggregation of every item score provided by each recommender after
normalizing its values by the maximum score of each method.

4.2. Experimental Setup

As we mentioned in Section 4, we applied a temporal split in which we selected the 80% of
the most ancient interactions of the �ltered data set as the training set and the rest as the test
set. Afterward, we selected the check-ins for each city and trained the recommenders using
the data of each city independently, as done in many state-of-the-art POI recommendation
studies [32, 29, 6, 30], where the authors test their approaches in a subset of cities or regions. We
followed the “TrainItems” methodology [33], in which we consider for each user u all venues of
the training set that have not been visited by u. We �rmly believe that this approach is suitable
because as opposed to repeated consumption of items, in e.g., the music domain, the inherent

4MyMedialite library: http://www.mymedialite.net/
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Table 4
Parameters tested in the recommenders. The best configurations are selected by maximizing nDCG@5.

Rec Parameters

UB/IB/PGN Sim = {Vector Cosine, Set Jaccard}, k = {20, 40, 60, 80, 100, 120}

HKV Iter = 20, Factors = {10, 50, 100}, � = {0.1, 1, 10}, ↵ = {0.1, 1, 10, 100}

BPRMF Factors = {10, 50, 100}, BiasReg = {0, 0.5, 1}, LearnRate = 0.05, Iter = 50, RegU = RegI = {0.0025, 0.001, 0.005, 0.01, 0.1}, RegJ = RegU/10

IRENMF Factors = {50, 100}, geo-↵ = {0.4, 0.6}, �3 = {0.1, 1}, clusters = {5, 50}

FMFMGM Factors = {50, 100}, ↵ = {0.2, 0.4}, ✓ = {0.02, 0.1}, dist = 15, iter = 30, ↵2 = {20, 40}, � = 0.2, sigmoid = False, LearnRate = 0.0001

RankGeo-FM Factors = {50, 100}, ↵ = {0.1, 0.2}, c = 1, ✏ = 0.3, neighs = {10, 50, 100, 200} iter = 120, decay = 1, boldDriver = True, learnRate = 0.001

Table 5
Results of the recommenders for Istanbul, Mexico City, and Tokyo. In bold, we show the highest value
for each city in each classic and POI types of recommenders in each metric. In bold with a dagger, we
show the highest values in each city.

Istanbul Mexico City Tokyo
Type Rec nDCG EPC IC UC nDCG EPC IC UC nDCG EPC IC UC

Classic

Rnd 0.000 †0.995 †19,886 †21,780 0.000 †0.988 †7,286 †4,018 0.000 †0.990 †5,422 †4,194
Pop 0.033 0.129 25 †21,780 †0.051 0.291 14 †4,018 †0.051 0.274 19 †4,194
UB 0.040 0.537 2,491 19,279 0.026 0.693 2,308 3,764 0.041 0.439 855 3,776
IB 0.036 0.605 9,247 19,362 0.019 0.842 4,765 3,764 0.037 0.633 3,151 3,776

BPRMF 0.036 0.568 3,154 19,367 0.038 0.331 156 3,764 0.044 0.338 414 3,776
HKV 0.025 0.713 950 19,367 0.018 0.820 704 3,764 0.028 0.576 78 3,776

POI

IRENMF 0.043 0.541 1,243 19,367 0.034 0.635 923 3,764 0.043 0.519 1,220 3,776
GeoBPR 0.042 0.626 722 19,367 0.041 0.421 196 3,764 0.046 0.403 300 3,776

FMFMGM 0.028 0.356 259 19,367 0.019 0.591 300 3,764 0.039 0.375 117 3,776
RankGeo-FM 0.039 0.567 2,324 19,367 0.022 0.673 1,578 3,764 0.033 0.593 1,870 3,776

PGN †0.044 0.228 3,032 †21,780 0.051 0.435 2,242 †4,018 0.050 0.377 1,559 †4,194

value of POI recommendation is to suggest new places for users to be discovered. Finally, as
we mentioned above, we will not only measure the performance of the recommendations in
terms of nDCG, but also we will analyze the novelty (in terms of EPC), the diversity (in terms
of Aggregate Diversity, or Item Coverage, IC), and the user coverage (UC) of the di�erent
algorithms. Unless stated otherwise, the results of all metrics are shown @5. The novelty and
diversity metrics are de�ned as:

• Expected Popularity Complement (EPC): a novelty metric that gives a higher value
(and hence, more novel) to those items that are less popular [34]. It is formulated as:
1/|Ru|

P
i2Ru

(1� |Ui|/|Utr|), where Ru denotes the recommendation list of a user, Utr

represents the set of users in the training set, and Ui is the set of users who rated item
i in the training set. However, in this study, we will show a normalized EPC value by
applying the min-max normalization.

• IC (Item Coverage, also referred to as Aggregate Diversity) diversity metric that measures
the number of di�erent items that an algorithm is able to recommend [35]. It is formulated
as |

S
u2Urec

Ru|, where Itr denotes the set of items in the training set and Urec represents
the set of users to whom we have provided recommendations.

• UC (User Coverage): measures the number of users that the recommender is able to
provide recommendations. It is formulated as |Urec|.



Table 6
Results of the recommenders for New York and London. The same configuration as in Table 5.

New York London
Type Rec nDCG EPC IC UC nDCG EPC IC UC

Classic

Rnd 0.000 †0.991 †3,509 †3,319 0.003 †0.959 †1,603 †1,749
Pop †0.114 0.436 13 †3,319 0.046 0.168 11 †1,749
UB 0.056 0.688 964 2,317 0.036 0.538 546 1,033
IB 0.032 0.853 2,407 2,386 0.035 0.766 1,166 1,033

BPRMF 0.080 0.489 388 2,387 0.039 0.189 11 1,034
HKV 0.038 0.776 402 2,387 0.015 0.717 88 1,034

POI

IRENMF 0.070 0.617 477 2,387 0.034 0.541 379 1,034
GeoBPR 0.076 0.502 155 2,387 0.046 0.301 102 1,034

FMFMGM 0.024 0.683 108 2,387 0.028 0.468 203 1,034
RankGeo-FM 0.028 0.773 1,892 2,387 0.020 0.673 1,117 1,034

PGN 0.108 0.542 1,505 †3,319 †0.050 0.241 332 †1,749

5. Analysis of Results

5.1. Performance of Recommenders in Each City

Before showing the results obtained for each of the user clusters, in Tables 5 and 6, we present
the results obtained by the recommenders in the �ve aforementioned cities. In this case, the
value of each metric is computed for every recommended user (represented in the UC metric)
and then returning the average, as is the standard in the literature. Analyzing these results,
we �rst note the low values obtained in nDCG. This is due to several causes: the high sparsity
of data, the temporal split in which is common to �nd new relevant venues that cannot be
recommended as they do not appear in the training set, and tendency of users checking-in in
the same POI repeatedly. As we use the “TrainItems” methodology, those venues are unsuitable
to be recommended, as the objective is to recommend new venues to users.
Only the Rnd, Pop, and PGN have complete coverage at the user level because when a

temporal split is performed, there are users in the test set that do not appear in the training
set. Both Rnd and Pop are not personalized, so they can perform recommendations to new
users. Although PGN is a personalized recommender, it will fall back to recommend popular
POIs to cold-start users in the test set, but not on the training set. With respect to ranking
accuracy, novelty, and diversity, we note that the Pop recommender, which is generally the
best in terms of relevance in all cities, except Istanbul, in which the best algorithm is the PGN
model obtaining 0.044 in nDCG (showing the strong popularity bias existing in this domain), is
the worst in both novelty and diversity. Moreover, PGN always obtains competitive results in
ranking accuracy, whereas it obtains higher values in novelty and diversity than Pop (although
it is not the best model in any dimension). This illustrates one of the fundamental problems
in recommendation, which is that it is nearly impossible to �nd a model that obtains the best
performance in all metrics, making it indispensable to de�ne algorithms that exhibit a balance
between the di�erent dimensions being analyzed [35].
Regarding the other recommenders, we can observe that in general, POI recommendation

algorithms tend to obtain better results than the classical recommenders, excluding Pop, at least
in terms of ranking accuracy. Nevertheless, some classic recommenders, such as the UB are still



competitive. Although this shows that classic recommender algorithms are still useful to be
considered as baselines, it is a clear indication of the importance of considering the geographical
in�uence in the POI recommendation domain. With respect to these models, we can observe
that besides PGN, the IRENMF recommender is one of the best in all dimensions. This result is
consistent with previous �ndings [7, 23], where it obtained a good balance between accuracy,
novelty and diversity. Nevertheless, we observe that GeoBPR, in general, outperforms IRENMF
in terms of ranking accuracy with the exception of Istanbul.
In the next section, we will perform an in-depth analysis of the performance of the most

representative models in di�erent groups of both travelers and locals shown in Sections 3.2
and 3.3.

5.2. Performance of Recommenders in Specific User Groups

Figure 2: Results for Istanbul.

Figure 3: Results for Mexico City.

Having shown the results of the recommenders by computing the average among all the
users, we turn our focus on analyzing the value obtained in each metric for the di�erent cluster
groups for both locals and travelers. Hence, we show these results in Figures 2, 3, 4, 5, and 6
for the �ve abovementioned cities. For those �gures, we show the performance of the clusters
of the travelers (denoted with T1, T2, T3, and T4), the locals (L1, L2, and L3), and all users in
the test set (all). We present three metrics in those �gures: nDCG (for ranking accuracy), EPC
(novelty), and IC (diversity). Regarding this last metric, notably, according to its formulation, as
it does not compute the average between the users to whom we have recommended, it may



Figure 4: Results for Tokyo.

Figure 5: Results for New York City.

Figure 6: Results for London.

obtain di�erent results in each user cluster depending on the number of users who belong to
each group. For example, if we compare the diversity between T3 and T1 using this original
formulation, we would obtain a much lower diversity in T1, because the number of travelers
in the �rst cluster is lower than in the third one. To mitigate this lack of normalization, we
compute this metric performing di�erent subsamples. Hence, we selected for each major group
(travelers and locals) the cluster with the smallest number of users and then computed the
value of the IC for this number of random users. The �nal value is the mean after repeating
the sampling 1, 000 times, thereby making the values comparable. This is why instead of the
“all” label, we use two additional ones when representing the IC metric, “MT” (mean of travelers)
and “ML” (mean of locals), which would be used for selecting a subsample of all users with the
size of the lowest traveler and local group, respectively. We repeat this process 1, 000 times,
and then the result shown is the average of the 1, 000 runs. Finally, due to the large number
of recommenders, we decided to show for each city the performance of Pop and BPRMF from
the classical recommenders and GeoBPR and PGN from the POI recommenders, as they are the



algorithms which generally obtain the best nDCG results.
Analyzing the �gures, we can observe interesting e�ects. First of all, travelers generally

obtain higher values than locals in terms of accuracy in most cities (e.g., in Istanbul and in
Mexico City all traveler groups obtain higher values in terms of nDCG than any local cluster),
despite being the group with less users (e.g., 7% in the case of Mexico City and 24% of New York
users in the test set are travelers). However, notably, travelers generally have a slightly lower
novelty than locals, indicating that they tend to receive recommendations of more popular
POIs. This makes sense, because when a tourist visits a city, she is more likely to visit the most
popular venues than if she is a local. Besides, we analyzed the top-5 most popular venues in
each city and we observed that most of them belong to transport and commerce categories. For
example, both airports (e.g., Kennedy, Atatürk and Benito Juárez, in New York, Istanbul, and
Mexico City respectively) and train stations (Euston in London and Akihabara in Tokyo) are
some of the venues that have received most visits in the training sets. In addition, shopping
malls and commerce districts like Harrods (London), Perisur (Mexico City), and Times Square
(New York) are also in the top-5 most popular venues.

Moreover, we can observe how locals tend to receive more diverse recommendations. This
again may be because locals are commonly sightseeing extensively within their home city.
Furthermore, locals are more likely to have visited numerous di�erent POIs in the training set
(including the most popular ones), which are then unavailable for recommendation in the test
set. By contrast, most travelers will visit a city for the �rst time during the evaluation period;
thus, it is more probable that they visit one of the recommended popular POIs, which will result
in a decrease in novelty and diversity. Finally, as there are far fewer travelers than locals, it
is normal that despite having computed the IC metric using the subsamples, we obtain much
lower results for travelers than for locals, making a direct comparison between them impossible.

In general, the big picture of these results tends to support the �ndings of [23], although we
performed a di�erent data preprocessing, splitting methodology, and also a di�erent analysis
and characterization of travelers and locals. Hence, in addition to the analysis performed for
travelers and locals, it is also interesting to study the behavior of the models among the di�erent
types of travelers and locals, i.e., all clusters shown in Tables 1 and 2.

First, regarding the travelers, there is no a common behavior in the di�erent cities. For exam-
ple, T4 is the group that obtains the highest values in nDCG for New York in all recommenders,
whereas, in other cities, such as Istanbul and Mexico City, there are some models which obtain
very low values for these users. Regarding novelty and diversity, T1 obtains the worst results in
the cities of Tokyo and New York, whereas, in London it is one of the best group in both aspects.
Despite these discrepancies among the travelers, we also perceive common behavior, such as
T2 and T3 generally obtaining similar results. This may be explained by the features shown in
Table 2, where we can observe that these two groups have the highest ratio of domestic trips,
whereas T1 and T4 tend to make more abroad travels, visiting more popular POIs as we can
observe in the performance in both nDCG and EPC metrics. In fact, except for Mexico City, in
the rest of the cities the Pop algorithm achieve higher values in EPC for both T2 and T3.

Regarding the locals, in all cities, except Mexico City, L3 is the cluster that obtains the lowest
levels in nDCG, comparing it with all locals and travelers groups whereas, in general, it also
obtains higher levels of novelty than the other clusters. Besides, for L3, all models have similar
nDCG performance, thus, exhibiting much fewer variations in this group than in any other



group. From Table 1, besides L3 being the most numerous, it is also the cluster that, in general,
contains the most active users (represented by the “Unique POIs” feature). Hence, it is more
probable to recommend these users less popular venues given the probability that they have
visited more venues before than the other two groups with a lower activity level, making more
di�cult to recommend to them both novel and relevant venues.

5.3. Discussion

According to the results obtained, if we segment the Foursquare users into di�erent clusters of
travelers and locals, we observe well-di�erentiated behaviors. As most users have been mostly
active only in their home cities, there are fewer users to be analyzed belonging to the traveler
groups than locals.

When analyzing the recommendations, we found that travelers tend to get higher values in
terms of accuracy and lower values in terms of novelty and diversity. Nevertheless, we also
observed that for both travelers and locals, the performance of the recommenders is rather
low and sometimes the best performing algorithm in the basic popularity recommender, which
con�rms the trend observed in [23]. This emphasizes the role of the popularity bias in POI
recommendation, although we believe that this bias would be worth analyzing more in-depth
for this domain, as it has been done in other traditional recommendation scenarios [36, 37].
A relevant insight of this study is that by assessing the quality of the clustering results, it

is imperative to use di�erent features to derive the clusters of travelers and locals. For the
travelers, we note that the geographical information was especially relevant, as we found
four highly di�erentiated groups according to the ratio of domestic trips and the geographic
displacement. Regarding this, we observed that T2 and T3 tend to make more domestic trips,
having comparable results in the evaluation metrics of the recommendations. For locals, we
found that that the most important features were regarding the activity level, especially in terms
of activity duration and the number of unique POIs visited. In this sense, we observed that
L3, which was the most numerous, exhibits the highest values in the abovementioned features,
whereas it also obtains the lowest performance in terms of ranking accuracy.

Possibly most importantly, with this analysis using an LBSN data set, we showed that di�erent
user groups exhibit very di�erent behavior; therefore, it would be misleading to measure the
performance of recommendation algorithms for all users as a whole. Especially, when the
recommendations should be tailored to speci�c groups, a “one-size-�ts-it-all” algorithm, which
seemingly produces good recommendations, might fail for a speci�c user group. Concretely,
we could measure di�erences of > 400% between di�erent user groups in terms of nDCG,
such as in London and New York using GeoBPR recommender or Mexico City using the PGN
algorithm. Besides, we also observed some important di�erences between user groups when
measuring EPC (although generally smaller than in nDCG), in the case of Tokyo for the PGN and
BPRMF algorithms. Further, in view of the analyses and results obtained, we would like to raise
concerns that this Foursquare data set may not be appropriate to be used in the tourism domain
because the vast majority of the users have barely checked-in in more than one city, cf. Tables 1,
and 2. However, although this data may be ill-suited for obtaining general conclusions about
the mobility patterns of travelers in a real-world environment, we do believe that LBSN data
might help tourism applications to recommend novel and diverse venues to users exploiting



the interactions of locals, as they will have more knowledge about the interesting venues in a
city [38].

6. Conclusions & Future Work

In this paper, we have presented a study on the POI recommendation by classifying Foursquare
users into di�erent groups of travelers and locals. To obtain these groups, we analyzed di�erent
mobility features for travelers derived from the trips they have done during the observation
period. For locals, we observed that the geographical information used in this work is not
helpful in computing the di�erent clusters, so we decided to use the information related to
the di�erent types of POIs visited by users and the activity level they exhibited. Besides, we
analyzed the performance of a wide range of classic and POI-speci�c recommendation models
in the abovementioned travelers and locals clusters in terms of ranking accuracy, novelty and
diversity. Regarding the results obtained, we have observed that this Foursquare data set is
mostly formed of users who are local to a given city, meaning that this type of data may less-
suited for analyzing tourism patterns travelers. However, we veri�ed that despite less available
training data for travelers, it is easier to recommend them relevant venues compared to the locals,
which we attribute to travelers being more impacted impacted by popularity bias, represented
by venues related to transportation and with shops & services. Moreover, we have also observed
performance di�erences among the discovered traveler and local subclusters. Thus, regarding
the locals, we have detected that it is more di�cult to produce relevant recommendations to the
users who have spent much time in their home city. Similarly, recommendations are generally
easier to compute for international travelers than for domestic ones, despite most travel being
domestic.
Generally, this study strengthens the conclusions of some previous studies [39, 23], but at

the same time shows that POI recommendation using LBSN data is more intricate than how
many approaches tackle the problem. Di�erent user groups have di�erent needs, which need to
be considered by the recommendation algorithms. As future work, we argue that it would be
essential to extend this analysis to other LBSNs, such as Gowalla5 or Brightkite6, to see if we
can obtain similar user groups to the ones discovered in our work. Other data sources might
exhibit other features to characterize the users, which raises the research question of which
features can be regarded as universal between multiple LBSNs. Finally, we believe that it might
be useful to analyze additional features to create the clusters, including geographical, temporal
(e.g., add more temporal and geographical restrictions to derive the home cities of the users)
and/or the POI categories visited by each of the di�erent types of users, to detect additional
biases in the recommendations.
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