Recommending the Duration of Stay in Personalized Travel Recommender Systems

Abhishek Agarwal and Linus W. Dietz Technical University of Munich

Tur Uhrenturm

Recommend where to go how long to stay

Image from https://booking.ai/booking-com-wsdm-webtour-2021-data-challenge-d814e9c1dd96

Previous work

How Long to Stay Where? On the Amount of Item Consumption in Travel Recommendation

Linus W. Dietz Department of Informatics Technical University of Munich Garching, Germany linus.dietz@tum.de Wolfgang Wörndl Department of Informatics Technical University of Munich Garching, Germany woerndl@in.tum.de

[RecSys Late-breaking Results 2019]

Our approach

- Two data sets: Twitter trips & Booking.com
- Four baselines: User mean/mode, [Dietz & Wörndl 2019]
- Two ML algorithms: Gradient Boosting & Scikit DT
- Three embeddings: One-hot, Global, Personalized
- Two metrics: RMSE & MAE

Data sets

	Booking.com	Twitter
#Users	96,643	24,146
#Trips	734,102	852,131
#Origin Countries	5	97
#Destination Countries	107	105
Domestic trips	4.5%	91.3%
Date Range	Jan 2016 – Feb 2017	Oct 2010 – Jul 2021

[Goldenberg & Levin 2021]

[Self collected]

Embeddings

	M-OHE	M-GE	M-PE
Trip type	Y	Y	Y
Traveler type clustering	Y	Y	Y
User home country	Y	Ν	Ν
Destination country	Y	Ν	Ν
City embeddings	Ν	Y	Y
Traveler embeddings	N	Ν	Y

Embeddings: Traveler Clustering

- Identify different traveler types [Dietz et. al 2020]
- Features:
 - # domestic / international trips
 - # unique domestic / international cities visited
 - mean duration of domestic / international trips
- Determine clusters number: Silhouette width & SSE
- Result: 6 clusters in both data sets

ТЛП

Embeddings: Cities

- Construct mobility graph
- Use Node2Vec to determine city embeddings

	Booking.com	Twitter
#Nodes	5,046	3,523
#Edges	88,623	62,260
Density	0.0069	0.01

ЛШ

Embeddings: Travelers

- Similar to city embeddings
- Per user: average embedding of all the past cities the user has visited

Embeddings

	M-OHE	M-GE	M-PE
Trip type	Y	Y	Y
Traveler type clustering	Y	Y	Y
User home country	Y	Ν	Ν
Destination country	Y	Ν	Ν
City embeddings	Ν	Y	Y
Traveler embeddings	N	Ν	Y

ЛШ

Results: Booking.com

Approac	h	MAE	MAE Rounded	RMSE	RMSE Rounded
User Mea	เท	0.835	0.821	1.168	1.214
User Mod	le	0.742	0.742	1.233	1.233
User Perc	entile – Country	0.726	0.726	1.185	1.185
User Perc	entile – City	0.769	0.769	1.209	1.21
M-OHE	Scikit-DT	0.678	0.6	0.955	1.01
	CatBoost	0.678	0.601	0.954	1.01
M-GE	Scikit-DT	0.545	0.483	0.787	0.837
	CatBoost	0.541	0.475	0.777	0.827
M-PE	Scikit-DT	0.563	0.491	0.804	0.853
	CatBoost	†0.534	†0.466	†0.767	†0.815

ЪШ

Results: Twitter

Approac	h	MAE	MAE Rounded	RMSE	RMSE Rounded
User Mea	n	0.962	0.958	1.307	1.336
User Mod	le	†0.806	†0.806	1.49	1.49
User Perc	entile – Country	0.823	0.823	1.471	1.472
User Percentile – City		0.856	0.856	1.442	1.443
M-OHE	Scikit-DT	0.932	0.974	1.261	1.286
	CatBoost	0.931	0.975	1.259	1.283
M-GE	Scikit-DT	0.884	0.872	1.229	1.268
	CatBoost	0.882	0.876	1.222	1.262
M-PE	Scikit-DT	0.892	0.898	1.236	1.278
	CatBoost	0.844	0.820	†1.183	†1.228

Limitations

- Need richer data sets
- Accuracy with Deep/Neural learning?
- Not a sequential solution!

Conclusions

- Hard problem
- Mobility enables substantial feature engineering
- Recommending the user mode is not a huge mistake!